Search results for " Masonry Infilled Frames"
showing 3 items of 3 documents
A semi-empirical stress-strain model for equivalent strut fiber-section modeling of infilled frames
2017
Infill-frame interaction is commonly modeled by means of equivalent strut macro-models. The main difficulty in using this phenomenological approach is to properly calibrate a force-displacement curve for the struts, as this depends not only on the geometrical and mechanical properties, but more specifically on the different potential damage mechanisms which may occur for the infill-frame system subject to lateral forces. If fiber-section elements are used as diagonal struts, the force-displacement curve is substituted by a stress-strain law. In both cases, the attribution of the inelastic law of the struts, based on a mechanical approaches, is not valid in general, as mechanical approaches …
EVALUATION OF FRAGILITY OF INFILLED FRAME STRUCTURES SUBJECT AFTERSHOCKS BY MEANS OF DOUBLE INCREMENTAL DYNAMIC ANALYSIS APPROACH
2018
The paper investigates the role of masonry infill walls on the seismic fragility of reinforced concrete structures subject to mainshock/aftershock sequences. An assessment framework aimed at determining aftershock fragility curves of bare frames and infilled frames is presented. The framework is based on a Double Incremental Dynamic Analysis (D-IDA) approach, which provides the adoption of ground motions defined by combining a fixed intensity mainshock with a set of variable intensity aftershocks. Mainshock (MS) intensity is scaled several times and combined with the same set of aftershocks (AS). Chord-rotation and shear limit states are specifically defined to consider the influence of mas…
Out of plane fragility of infill walls with and without prior in-plane damage
2019
The paper presents the results of a probabilistic assessment framework aimed at evaluating out-of-plane fragility curves of infill walls which have suffered (or not) prior in-plane damage. Out-of-plane incremental dynamic analyses are performed based on a suite of 22 ground motion records. A recently developed in-plane / out-of-plane macroelement model is used to model masonry infills within frames. The outcomes show fragility curves representing the probability of exceeding out-of-plane collapse at a given earthquake intensity as a function of a different combination of geometrical and mechanical parameters, in-plane damage level and supporting conditions.